

$$= \frac{2x+5x}{5e} - 2e^{5x+2x}$$
$$= 3e^{7x}$$

We see that $W(y_1, y_2)$ is not the zero function on I_1 in particular $W(y_1, y_2)(0) = 3e^{\frac{1}{2}(0)} = 3e^{\frac{1}{2}} = 3 = \frac{1}{2} = 0$.

Thus, $y_1 = e^{2x}$ and $y_2 = e^{5x}$ are linearly independent on $I = (-\infty, \infty)$.

We have
$$y_1 = e^{2x}$$
, $y_1' = 2e^{2x}$, $y_1'' = 4e^{2x}$

Thus,

$$y''_{-} - 7y'_{+} + |0y|_{-} = 4e^{2x} - 7(2e^{2x}) + 10(e^{2x})$$

 $= 4e^{2x} - 14e^{2x} + 10e^{2x}$
 $= 0$

Thus,
$$y_1 = e^{2x}$$
 solves $y'' - 7y' + 10y = 0$.
We have $y_2 = e^{5x}$, $y_2' = 5e^{5x}$, $y_2'' = 25e^{5x}$.

Thus,

$$y_{2}'' - 7y_{2}' + 10y_{2} = 25e^{5x} - 7(5e^{5x}) + 10(e^{5x})$$

 $= 25e^{5x} - 35e^{5x} + 10e^{5x}$
 $= 0$

Thus, $y_1 = e^{5x}$ solves y'' = 7y' + 10y = 0.

(i)(c) Since
$$y_1 = e^{2x}$$
 and $y_2 = e^{5x}$
are linearly independent solutions to
 $y'' - 7y' + 10y = 0$ on $I = (-\infty, \infty)$ we know
that the general solution y_h to
 $y'' - 7y' + 10y = 0$ on I is
 $y_h = c_1 e^{2x} + c_2 e^{5x}$
 $c_1 y_1 + c_2 y_2$

$$(1) (1)$$
We have $y_p = 6e^x$, $y'_p = 6e^x$, $y'_p = 6e^x$
So,
 $y''_p - 7y'_p + 10y_p = 6e^x - 7(6e^x) + 10(6e^x)$
 $= 6e^x - 42e^x + 60e^x$
 $= 24e^x$
Thus, $y_p = 6e^x$ solves $y'' - 7y' + 10y = 24e^x$ on I
(1) The general solution to $y'' - 7y' + 10y = 24e^x$
on I is
 $y = C_1 e^x + C_2 e^x + 6e^x$
 $y_p = 6e^x + 6e^x$

$$\begin{array}{l} \hline 0[f] \\ We \ \text{Know that } y = c_1 e^{2x} + c_2 e^{5x} + 6e^{x} \text{ is the} \\ general \ \text{solution to } y'' - 7y' + 10y = 24e^{x} \text{ on } I. \\ Let's \ \text{find } c_{11}c_2 \ \text{so our solution satisfies} \\ y(o) = 0, \ y'(o) = 6. \\ We \ \text{have } y = c_1 e^{2x} + c_2 e^{5x} + 6e^{x} \\ y' = 2c_1 e^{2x} + 5c_2 e^{5x} + 6e^{x} \\ y' = 2c_1 e^{2x} + 5c_2 e^{5x} + 6e^{x} \\ y'(o) = 0 \\ y'(o) = 6 \end{array} \qquad \begin{array}{c} c_1 e^{2(o)} + c_2 e^{5(o)} + 6e^{o} = 0 \\ c_1 e^{(o)} + 5c_2 e^{5(o)} + 6e^{o} = 6 \\ zc_1 e^{(o)} + 5c_2 e^{5(o)} + 6e^{o} = 6 \\ \end{array} \qquad \begin{array}{c} e^{o} = 1 \\ c_1 + c_2 + 6 = 0 \\ zc_1 + 5c_2 = 0 \end{array} \qquad \begin{array}{c} c_1 + c_2 = -6 \\ zc_1 + 5c_2 = 0 \end{array} \qquad \begin{array}{c} 1 \\ zc_1 + 5c_2 = 0 \end{array} \qquad \begin{array}{c} 2 \\ zc_1 + 5c$$

 $\left\{ \right\}$

(1) gives
$$c_1 = -6 - c_2$$
.
Plug this into (2) to get $2(-6 - c_2) + 5c_2 = 0$.
So, $-12 - 2c_2 + 5c_2 = 0$.
So, $3c_2 = 12$.

Thus,
$$c_2 = 4$$
.
Plug back into (1) to get $c_1 = -6 - 4 = -10$.
Plug back into
 $y = c_1 e^{2x} + c_2 e^{5x} + 6x$
to get
 $y = -10e^{2x} + c_2 e^{5x} + 6x$

solves
$$y'' - 7y' + 10y = 24e^{x}, y'(a) = 6, y(0) = 0.$$

2(b) We have

$$y_1 = x^2$$
 $y_2 = x^4$
 $y_1' = 2x$ $y_2' = 4x^3$
 $y_1' = 2$ $y_2' = 12x^2$

Thus,

$$x^{2}y_{1}'' - 5x y_{1}' + 8y_{1} = x^{2}(2) - 5x(2x) + 8x^{2}$$

= $2x^{2} - 10x^{2} + 8x^{2}$
= 0

and

$$x^{2}y_{2}''-5xy_{2}'+8y_{2} = x^{2}(12x^{2})-5x(4x^{3})+8x^{4}$$

 $= 12x^{4}-20x^{4}+8x^{4}$
 $= 0$
Thus, both $y_{1} = x^{2}$ and $y_{2} = x^{4}$ solve
 $x^{2}y_{1}''-5xy_{1}'+8y=0$

2(c) Since
$$y_1 = x^2$$
, $y_2 = x^4$ are linearly
independent solutions to the homogeneous
linear equation $x^2y'' = 5xy' + 8y = 0$
the general solution is
 $y_h = \frac{c_1x^2 + c_2x^4}{c_1y_1 + c_2y_2}$
Where $c_{11}c_2$ are constants.

Z(J) Let
$$y_p = 3$$
.
Then, $y'_p = 0$, $y''_p = 0$.
Then, $y'_p = 0$, $y''_p = 0$.
Thus, plugging y_p into the left hand side
Thus, $plugging y_p$ into the left hand side
of $x^2y'' - 5xy' + 8y_p = x^2 (0) - 5x (0) + 8(3) = 24$
 $x^2 y''_p - 5xy'_p + 8y_p = x^2 (0) - 5x (0) + 8(3) = 24$
So, y_p is a particular solution to
 $x^2 y'' - 5xy' + 8y = 24$.

(a) (c) The general solution to

$$x^{2}y'' - 5xy' + 8y = 24$$

On I is
 $y = c_{1}x^{2} + c_{2}x'' + 3$
 y_{h} y_{p}
(c) (f) The general solution to
 $x^{2}y'' - 5xy' + 8y = 24$
is given by
 $y = c_{1}x^{2} + c_{2}x' + 3$
We want this solution to satisfy
 $y'(1) = 0$ and $y(1) = -1$
We have
 $y = c_{1}x^{2} + c_{2}x' + 3$
 $y' = 2c_{1}x + 4c_{2}x^{3}$
So, we must solve
 $y(1) = -1$
 $y'(1) = 0$ $c_{1}(1)^{2} + c_{2}(1)^{4} + 3 = -1$
 $c_{1} + 4c_{2}(1)^{3} = 0$ $c_{1} + 4c_{2} = 0$
(2)

Solve for
$$c_1$$
 in (1) to get $c_1 = -4 - c_2$.
Plug this into (2) to get $2(-4 - c_2) + 4c_2 = 0$.
This gives $-8 - 2c_2 + 4c_2 = 0$.
This gives $2c_2 = 8$.
So, $c_2 = 4$.
Thus, $c_1 = -4 - c_2 = -4 - 4 = -8$
So the solution to
 $x^2y'' - 5xy' + 8y = 24$, $y'(11 = 0$, $y(1) = -1$
is given by
 $y = -8 \cdot x^2 + (-1) \cdot x^4 + 3$
or
 $y = -8x^2 - x^4 + 3$
Answer

(3)(a) Let $y_1 = x^{-1/2}$ and $y_2 = x^{-1}$ Note that $y_1 = \frac{1}{\sqrt{x}}$ and $y_2 = \frac{1}{x}$ are both defined on $I = (0, \infty)$ from their graphs: $y_1 = \frac{1}{\sqrt{x}}$ $y_2 = \frac{1}{x}$ $y_2 = \frac{1}{x}$

 $W(f_{1},f_{2}) = \begin{cases} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{cases} = \begin{cases} -\frac{1}{2}\chi^{-1/2} & \chi^{-1/2} \\ -\frac{1}{2}\chi^{-3/2} & -\chi^{-2} \\ \frac{1}{2}\chi^{-3/2} & -\chi^{-2} \end{cases}$ We get that $= (\chi^{-1/2})(-\chi^{-2}) - (-\frac{1}{2}\chi^{-3/2})(\chi^{-1})$ $= -\chi + \frac{-1}{2}\chi - \frac{-3}{2}\chi - 1$ $= -X + \frac{1}{2}X$ $= -\frac{1}{2} \times \frac{-5/2}{2}$ Note this isn't the zero function on I=(0,00). In particular, $W(y_1, y_2)(1) = -\frac{1}{2}(1)^{-5/2} = -\frac{1}{2} \neq 0$.

independent on
$$I = (0, \infty)$$
.

3(b) We have that These are $y_2 = x^{-1}$ $y_{1} = \frac{-1}{2}$ $y_{1}' = -\frac{1}{2} \frac{-3}{2}$ $y_{1}'' = \frac{3}{4} \chi^{-5/2}$ all defined when X70 $y_{2}^{\prime} = -\chi^{-2}$ that is on $y_{2}'' = Z x^{-3}$ $I=(0,\infty)$. Plugging y, and yz into the left side of $2x^{2}y'' + 5xy' + y = 0$

gives

$$2 \times^{2} y_{1}'' + 5 \times y_{1}' + y_{1} = 2 \times^{2} (\frac{3}{4} \chi^{5/2}) + 5 \times (-\frac{1}{2} \chi^{-3/2}) + \chi^{-1/2}$$

$$= \frac{3}{2} \times^{-1/2} - \frac{5}{2} \times^{-1/2} + \chi^{-1/2}$$

$$= 0$$

and

$$2 \times^{2} y_{2}'' + 5 \times y_{2}' + y_{2} = 2 \times^{2} (2 \chi^{-3}) + 5 \times (-\chi^{-2}) + \chi^{-1}$$

$$= 4 \times^{-1} - 5 \times^{-1} + \chi^{-1}$$

$$= 0$$

So, y_{1} and y_{2} both solve $2 \times^{2} y'' + 5 \times y' + y = 0$.

The general solution to
$$2x^2y'' + 5xy' + y = 0$$
 is

$$y_{h} = \frac{c_{1}x^{1/2} + c_{2}x^{2}}{c_{1}y_{1} + c_{2}y_{2}}$$
Where $c_{11}c_{2}$ are constants.

1

..

(3)(F) We want

$$-1/2$$
 $-1/2$ $-1/2$ $+1/5x^2 - \frac{1}{6}x$
 $y = c_1 x + c_2 x^2 + \frac{1}{15}x^2 - \frac{1}{6}x$

Where

$$y'(1) = 0$$
 and $y(1) = 0$.
 $-\frac{3}{2} - \frac{2}{5} - \frac{2}{15} - \frac{1}{6}$
We have $y' = -\frac{1}{2}c_1 - c_2 - \frac{2}{5} - \frac{2}{15} - \frac{1}{6}$

So we must solve

$$y'(1)=0$$

 $y(1)=0$
 $y(1)=0$
 $-\frac{1}{2}c_1(1)^{-3/2} - c_2(1)^{-2} + \frac{2}{15}(1) - \frac{1}{6} = 0$
 $c_1(1)^{-1/2} + c_2(1)^{-1} + \frac{1}{15}(1)^2 - \frac{1}{6}(1) = 0$
 $-\frac{1}{2}c_1 - c_2 = \frac{1}{30}$
 $c_1 + c_2 = \frac{1}{10}$
 $c_1 + c_2 = \frac{1}{10}$

Solving (1) for c_2 gives $c_2 = -\frac{1}{2}c_1 - \frac{1}{30}$. Plug this into (2) gives $c_1 + (-\frac{1}{2}c_1 - \frac{1}{30}) = \frac{1}{10}$. So, $\frac{1}{2}c_1 = \frac{2}{15}$. Thus, $c_1 = \frac{4}{15}$. And, $c_2 = -\frac{1}{2}c_1 - \frac{1}{30} = -\frac{1}{2}(\frac{4}{15}) - \frac{1}{30} = -\frac{5}{30} = -\frac{1}{6}$ So, the solution we are looking for is $y = \frac{4}{15}x^{-1/2} - \frac{1}{6}x^{-1} + \frac{1}{15}x^2 - \frac{1}{6}x$